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We report on computational methods and results for convection of a constant property 
liquid in a saturated porous medium. Flow is examined in a square domain with insulated side 
walls, a cold top and a hot bottom boundary. An ADI finite difference method which is fourth 
order in space and second order in time is compared with a method of lines code which is 
based on fourth order finite differences in space and a Runge-Kutta-Fehlberg fourth order 
ODE solver. A coordinate transformation is used with the ADI scheme in an attempt to 
improve resolution in the boundary layer. The accuracy of the ADI method is studied by 
application to steady flow at Rayleigh number R = 200. A comparison of the methods is also 
made for solutions at R = 400, some of which display oscillations in time. An attempt is made 
to study the structure of these oscillatory solutions. A nearly steady “single-cell” solution at 
R = 400 is also described. We find five distinct long-time solutions at R = 400, each of which 
is generated by a different initial condition. 

1. INTRoDuC~~N 

We are concerned with the numerical solution of the equations which govern 
convection in a saturated porous medium which is heated from below. The steady 
conduction solution gives way to a steady convective flow above the critical Rayleigh 
number which is 

R,=4112. (1) 

This steady solution in turn gives way to an oscillatory solution, for higher Rayleigh 
numbers, somewhere in the range 300 (R (400. The nature of this convection has 
been studied by numerous people including Caltagirone [l], Horne [19], Horne and 
O’Sullivan [8,9], Straus and Schubert [14], and Schubert and Straus [12]. Surveys 
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FLOW IN GEOTHERMAL SYSTEMS 1’2 i 

of steady and osciliatory convection in porous media have been given recently by 
Combarnous and Bories [3], Combarnous [20], and Cheng [2]. 

IIorne [ 191 and Horne and O’Sullivan [S, 91 have noted that long-time solutions 
are initial condition dependent. In a constant viscosity calculation at R = 500, a 
three-cell steady flow in a square evolved, following an impulsive rise of the uniform 
lower boundary temperature. In contrast when the bottom temperature was raised 
slowly a one-cell oscillatory solution developed. Similar results were found for other 
values of Rayleigh number when R 2 280. Flows induced in squares and rectangles 
with partially heated bottom boundaries are qualitatively similar. Home and 
O’Sullivan 1211 produced related solutions for a variable viscosity liquid as well. 

Caltagirone -[1 ] found steady solutions in rectangular domains of various aspect 
ratio at several specifi.c Rayleigh numbers up to 300. Oscillatory solutions were 
observed near R = 500. A Galerkin method was used to show that the ~~~~~uatio~ 
critical Rayleigh number was about 384 for a square. 

A numerical Galerkin procedure was employed by Schubert and Straus [ 12] to 
investigate a variety of two- and three-dimensional flows. They found a fluctuation 
critical Rayleigh number in the range 300 5 R 5 320 for the strictly two-dimensional 
case of a single roll. Such flows are physically plausible in three-dimensional systems 
if the dimension perpendicular to the plane of the roll i.s sufficiently small. multiply- 
cell steady solutions are unstable at larger values of the Rayieigh number. A 
unicellular oscillatory solution, with nearly harmonic variations in time, was 
produced at R = 350. At larger Rayleigh number values the ti:me-history is less 
regular but definitely oscillatory. Multiplicity of solution at large Rayleigh number 
was observed. 

In the present work we have two major goals in mind. The first is to delineate the 
level of accuracy of the numerical solutions developed in the past, particularly with 
regard to the oscillatory case. In order to achieve this goal we present a systematic 
comparison of second and fourth order finite difference methods and an assessment of 
spatial resolution. Our second goal is to ascertain the degree of multiplicity of long- 
time solutions at a moderate Rayleigh number -larger than the fluctuation critical 
value. 

We consider the paradigm problem of a constant viscosity liquid in a square 
porous medium, with insulated side walls and horizontal boundaries at constant bu: 
different temperatures. 

We applied two numerical methods to the porous convection equations. To our 
knowledge these methods have not been used before in this setting. Both methods use 
a finite difference approximation in the rectangular (x, z) domain which can be either 
second or fourth order accurate depending on the use of either three or five mesh 
points to approximate spatial derivatives. The first method is an ~ternating-direction- 
implicit (ADI) method [ 10, 111 which is second order accurate in time and is run 
with a. fixed time step. The second method is a Runge-Kutta-Feblberg (RKF) &U?) 
method [7, 131 which provides fourth order accuracy in time and a~tomati~~~y 
adjusts the time step in accordance with a preassigned error tolerance. TO compute 
steady state solutions the AD1 scheme was superior since a large time step could be 
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used to accelerate convergence. For oscillatory solutions at a Rayleigh number above 
400 the RKF method is probably superior. 

We have found single-cell oscillatory solutions at R = 400 of both harmonic and 
irregular form depending upon the initial conditions used to start the calculation. A 
single-cell steady solution was produced at R = 400 by slowly increasing the 
Rayleigh number of the system with time. Finally multiple cell steady solutions were 
also produced at R = 400. 

In the case of steady state solutions a high degree of spatial resolution, obtained by 
.using up to 50 X 50 mesh spacing, was employed to demonstrate code convergence. 
An equal degree of resolution was economically unfeasible for us in the case of the 
oscillatory solution at R = 400, given the computer available. The solutions for 
20 x 20 and 30 x 30 meshes are fairly close. We really need a solution on a 40 x 40 
mesh for a definitive result. 

2. THE DIFFERENTIAL EQUATIONS 

The porous flow model consists of a marching equation for the temperature 
deviation B(x, z) and an elliptic equation for the stream function y/(x, z). Here 8 is the 
deviation from the steady conduction temperature. The equations are those given by 
Zebib and Kassoy [ 151. The variables are all non-dimensional. In our experiments 
the domain (x, z) is always square with 0 <x < 1, -1 ,< z < 0. The relation between 
8 and the non-dimensional temperature T is T = -z + 0, where 0 < T < 1. Note that 
the non-dimensional time is larger by a factor of R than that commonly used. The 
equations are 

(2.1) 

Here R denotes the Rayleigh number. The boundary conditions are 

e= 0, I+/=0 at top and bottom 
z=Oandz=-1 

a3 

iG= 
0, fy=o on the sides 

x=Oandx= 1 

(2.3) 

Various initial conditions for 0(x, z, 0) will be used. 
The Nusselt number is a ratio of the total heat transport through a horizontal 

section to that due to conduction alone. It is given by the following formula 

Nub t> = 1 - 5 l (SAX, z, t) + RB(x, z, t) y/,(x, z, t)) dx. (2.4) 
0 
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For a steady state solution the Nusselt number is independent of both .z and L 
Numericai errors will cause the computed Nusselt number to vary with z. It is iess 
accurate to compute Nu(z, t) at the boundary (z = -1 or z = 0) because Oz must be 
approximated by a one-sided difference. This difference approximation is not required 
to solve (2.2) since this equation is not approximated at the boundary, but only in the 
interior. Our results will give the Nusselt number at the boundary Nuf-1, t) and also 
the integral average 

O cl(t) = 
I 

Nu(z, t) dz. (2.5,! 
-I 

The solution of the porous flow equations tends to develop a boundary layer along 
the edge of the domain. This suggests the use of a finer mesh near the edges. Aher- 
natively, we can use a coordinate transformation with a constant mesh spacing, We 
chose the latter approach. The original mesh is denoted by (x, r). where 0 <X < 1 
and -i < z < 0. The transformed coordinates are (2, z*)? where -1 < 3 < 1 and --I < 
z! < 1. The transformation is given by 

2 = f(x), x =f-l(2), 2 = g(z), z = g-“(f). (2.6;) 

Then the derivatives transform according to the formula 

where 

F,(f) =f’(f-‘(4), F*(2) =f”(j-‘(,y”)), 

G,(Z) = g’(g-l(f)), G&j’) = g”(g-I(f)). 

The transformed equations are (using subscripts to denote partial derivatives). 

Bt=$(F;6& + G,8:) - Flyi -F,Glj@;y/i- Bry;j (2.8) 

F: yf/;.< + Fz v; + G: v/i; + G, YJ’; = Fz di . :2 9 1 \ ~ I 

For the calculations described in this paper we used the following coordinate 
transformation which is determined by the single parameter CL 

f(x) = s Cl l++asz) . where S=2x- 1, 

g(x) = T (I + aT2) 
Ifa ’ 

where T= I + 22. 
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If a = 0, then the transform is linear and the mesh spacing in the (x, z) coordinates is 
uniform. The ratio of the (x, z) mesh spacing at the boundary to that in the interior is 
approximately l/(1 + 3a). We tested a in the range 0 < a < 0.75. 

3. THE AD1 METHOD 

We used an alternating direction implicit method for the temperature (0) equation 
which is fourth order accurate in space and second order in time. A fourth order 
accurate direct method was used for the stream function VI. 

The ADI scheme for the temperature is written below. A fictitious point was used 
along the sides of the (2, f) rectangle. Therefore the mesh is (ai, fm,>, where Zi = -1 + 
i Ax, -1 <i,<NX+ 1, ij=-1 +jAz, O<j<NZ, Ax=2/NX, AZ=2/NZ. An 
equation for each of the fictitious points is obtained from the boundary conditions by 
using a live point approximation for Bf = 0. Thus, at 2-r = -1 -Ax we have the 
equation 

(-38”,, - loeij + 18e:j - 6eij + e;jy(i2 Ax) = 0, (3.1) 

where the finite difference coefftcients are chosen to yield a fourth order accurate 
approximation to 0,. Here we have used 0; to denote the approximation at time level 
t, and mesh point (xi, zj). A similar equation holds along the right side. In order to 
clarify the presentation we will write the AD1 scheme for equation (2.2) in the 
original coordinates, rather than (2.8) in the transformed coordinates. 

(3.2) 8 
(8”+1 + 8”) 

““+‘=e”+AtL, 2 + At L,(en) -At d,(y/“+ “*), 

8 z (‘“+I + e”) -At6 ($+1/2) 

2 x 
(3 3) 

At the sides the boundary condition (3.1) is used to obtain an equation for x-, and 
x,,,,. In the interior the operators are 

L,(e) = $ s,,(e) - 6,w + 1’2) s,(e), 

L,(e) = $ s,,(e) + ~,(~fi+ “2) s,(e). 

Here L(e) I~x,,zj~ = ai Bilj + a2 Bizj + a3 eijJ + a, eilj + a5 BiS j is an approximation for 
the second derivative a’/ax*, where the coefficients ai are determined from 
polynomial interpolation thru the points xi,,..., xi5. The points are taken to be 
centered if possible (i.e., xi-*, xi-i ,..., xi+*) otherwise a one sided approximation is 
used. These approximations will yield fourth order accuracy except for the second 
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derivative terms a,,(@ and c?,~(@ at the first mesh points in from the boundary (xi,” 

.y,vx.. z 1, and z .+,Z- ,). Experience with two point boundary value problems indicates 
that this provides global accuracy which is fourth order. The lyy7;“‘” values are 
approximations of the stream function centered between t, and t,+ r . We will discuss 
the computation of yP+ If2 shortly. The solution of Eqs. (3.2) and (3.3) for @‘I and 
In+! 3 require the solution of a banded linear system of equations whose total 
bandwidth is five, that is the matrix of the system has at most five non-zero elements 
in each row. A Gauss elimination routine with pivoting is used for this solution. 

The equation for the stream function w was solved using a subroutine, SEPELI, 
written by Adams [16j, which is available from the National Center for Atmospber~~ 
Research. This routine uses a direct method to solve a second order finite difference 
approximation of (2.1). To obtain fourth order accuracy, the right side (-S,) in (2.1) 
is approximated by a fourth order, five point formula which is one sided near the 
vertical boundary of the domain. Then a deferred correction is used to obtain a fourl;h 
order accurate solution of (2.1). This involves solving an equation which is the same 
as (2. I) except a truncation error estimate is added to the right side as a correction 
term. Thus an equation like (2,l) must be solved twice, but each time a fast direct 
method can be used since we have a standard second order approximation of the 
Laplace operator. This yields the same asymptotic convergence rate (namely, 
O(dx’j + O@Z’)) as a finite difference approximation based on a five point anpro:<- 
imation in each direction. Kowever, the system of equations can be solved by two 
applications of a fast direct solver based on a three point a~pro~imatil~~. Therefore, 
the method is quite efficient. 

The value of v should be computed at fn+1,,2 in order to obtain second order 
accuracy in time. This requires that the derivative 6.r in (2.. 1 j be evaluated at i,+ 1J1 a 
We tried three ways to center li/ at t,+ Uz. In the first we used linear extrapolation 
from 8”-~ i and 8” to obtain On’ I!‘, then compute yn-1’2 from (2-l), then use a 
complete ADI (sweep in both the x and z directions) to compute FL’. To start the 
code we set 8- ’ = 6’ in this case. In the second method we compute w” using @” in 
(2.1 )Y then perform the AD1 sweep in x direction for &’ ‘, using vq instead of $ i- yi2j 
then perform the ADI sweep in the z direction using I$+ IF2 to obtain en+ ‘= T&s 
requires two solutions of (2.1) and one complete ADI step for (2.2). In the third 
method we compute $ from 8”: use one complete ADI step to compute a first 
approximation to @‘+ ’ based on y” instead of r+PL ii’l then compute I+P ’ “’ using +bis 
wlue of PC I, then repeat the computation for BnL1 tising ,‘+ L’i. This m&hod 
requires twice as much work as the first method, however, the first two methods were 
sometimes unstable if the timestep was too large. Also the first required a smaller 
time step to obtain the same accuracy as the third method. Therefore we generally 
used the third method for the computation of osciliatory solutions. For steady state 
solutions we computed v” from 0” and then use instead of v” + ‘I2 in the ADI 
sweeps. We observed no stability problems with t 

As an option, we included a second order versi I scheme. This used a 
three point mesh instead of the five point stencil described above. The ferret! 
correction can be omitted from the calculation of v by the SEPELI code. In s case 
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the calculation for w  has second order accuracy. Note that the AD1 scheme is applied 
to the transformed equations (2.8) and (2.9). 

4. THE RUNGE-KUTTA-FEHLBERG METHOD 

The program for this method is written in the form of a subroutine to solve a fairly 
general class of PDE problems [6]. This class includes a system of “marching 
equations” in the form 

u, = f(w, w, 5 w, 3 w,, , w,; 3 w,& 

possibly coupled with a single elliptic equation for a scalar variable 

al(x) vxx + 4(x> vx + b,(z) YE, + Mz) II/, + (a,(x) + b(z)) v 

= f-b, u, , u, 9 u, 9 u,, 9 u,,). 

Here u is a vector 

u(t, 4 z) = @l(L x, z),..., Q, x, z))’ 

and w  consists of u augmented by the elliptic variable I,V, 

The spatial domain is a rectangle in (x, z). The numerical approximation is based on 
the method of lines. A finite difference approximation is used in the (x, z) domain. 
This results in a system of ordinary differential equations in time t for the functions 
?VJt) which approximate the mesh point values ~(t, xi, 5). The mesh points (Xi, zj) 
need not have a uniform spacing, although all of our RKF computations were carried 
out with a uniform mesh spacing. 

The finite difference approximation in (x, z) can be either second order accurate 
involving three mesh points or fourth order involving five points. The Runge-Kut- 
ta-Fehlberg version which we used was taken from a report by Shampine [ 171. This 
is an RKF 3-4 scheme which yields both third and fourth order accurate approx- 
imations in time. The difference between these approximations is used to estimate the 
time discretization error and control the time step. The time step is set so that the 
estimated error (est) is bounded by 

In our computations we set c = E,,, = cabs and generally used E in the range 2.E-5 < 
E < l.E-3. This RKF 3-4 scheme is similar to the RKF 4-5 scheme [ 131 except it 
requires less storage and computation and it is less accurate. The 3-4 scheme is 
probably the better choice for the method of lines solutions to initial value problems 
in partial differential equations. The time step tends to be limited by a stability 



FLOWIN GEOTHERMAL SYSTEMS I.27 

restriction so that higher order schemes are not useful, An Adams scheme might be 
more efficient for our problem because the evaluation of the stream function is quite 
expensive on the 30 x 30 mesh, and the Adams sceme tends to require fewer 
functional evaluations. However, the Adams scheme requires too much storage. An 
implicit scheme, such as the higher order backward di.fference formulas used in the 
Gear codes 113, 181 would permit a larger time step. However, they would reqtiire the 
solution of a system of equations involving a very large Jacobian matrix. On a 
30 x 30 mesh with a five point difference approximation the Iacobian matrix wou’ad 
have order 900 with bandwidth 150 (approximately), 

The ADI scheme is superior to the RKF scheme when a steady state solution 6s 
desired. For oscillatory solutions the RKF tends to be more effcient. The RKF is 
-more efficient at higher Rayleigh numbers since its time step is limited by a stability 
condition which depends on the reciprocal of the Rayleigh number. The RKF code, 
with Rayleigh number R = 400, mesh resolution M= 20, an.d error tolerance i: = 
X-4, requires about 67 5% as much CPU time as an ADI code with the same R and 
N and time step At = 0.1. With N = 30, E = 2.E-5, and At = 0.05 the 
about 72 % as much CPU time. The comparison is not very accur 
computing time depends on E and At, and it is difficult to adjust these parameters to 
give the same accuracy. Also, the AD1 code is not programmed as carefully and 
requires additional work due to the coordinate transformation. 

The spatial finite difference approximations used in the ADI and RKF codes are 
not exactly the same. There are slight differences at the boundary. The RKF code 
was designed primarily for hyperbolic problems. Therefore the finite difference 
approximation for first derivatives is one lower order near the boundary than in the 
interior [6]. A third order one sided approximation based on four mesh points is used 
along the mesh lines immediately adjacent to the upper and lower boundaries. In the 
interior a five point centered formula is used. Along the vertical side dary a 
fictitious point is used to set up a five point formula in both the RKF and codes. 
As shown in Figs. 2 and 3 there is very little difference between the results obtained 
by the two codes. 

5. ON THE ACCURACY OF THE STEADY STATE SOLUTION 

In this section we attempt to estimate the accuracy of our numerical solutions for 
values of the Rayleigh number low enough to yield steady state solutions. This 
enables us to comment on the value of the coordinate transformation and also on the 
comparison between second and fourth order schemes, In the next section we show 
that the time dependent oscillatory so1ution.s at higher Rayleigh numbers require a 
very accurate scheme. While there is probably little need for such accuracy in most 
steady state computations, we need the accuracy in order to compare methods. Gur 
comparisons will be based on the Nusselt number since it is a scalar quantity of 
considerable physical interest. We prefer to compare the integral of the Nusselt 

5&1!10/1-9 
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number Nu in the vertical rather than the value Nu(-I) at the lower boundary. For 
the true steady state solution these numbers are the same. However, the numerical 
computation of Nu(-1) requires a difference approximation of 8, using four values of 
19 above the boundary along with the boundary value. This approximation is 
completely one sided whereas the approximation of the differential equation uses 
difference formulas with one point below and three points above the center point. As 
we will see, the boundary values Nu(-1) and Nu(O) are not as accurate as the 
interior values. We are indebted to one of the reviewers of this paper for observing 
that 13,~ = 0 along the bottom and top boundaries in the case that 0 = 0 there. It is 
easy to show that a48/az4 = 0 as well. The reviewer suggests the use of skew 
symmetry for the boundary condition in 19 and in the 19, computation for the Nusselt 
number. This would probably have yielded better accuracy than our method. Our 
code was designed for a variable temperature along the boundary for which the skew 
symmetry condition is not suitable. However, we could have used a special boundary 
calculation for the 19 = 0 case. 

For all of the steady state cases at R = 200 we used the initial function 

8 = -sin 7tz cos rcx, -1 <z<o. (5.1) 

These runs were made with the AD1 code unless a statement is made to the contrary. 
We turn next to a discussion of the results. In all of these steady state cases we chose 
At to give fast convergence, usually At = 2.0. 

5.1. A Richardson Extrapolation for the Nusselt Number 

We used an equally spaced mesh in (x, z) with the mesh spacing given by h = l/N. 
The Richardson extrapolation is based on an assumed expansion of the Nusselt 
number, namely, 

mu(h) = N, + N, hP +,O(hP+ ‘) 

Here p is the order of scheme, p = 2 or p = 4 for our codes. Computation of mu(h) at 
two values of the mesh spacing (h,, h,) enables elimination of the N, hP term to give 
the extrapolated value N0 provided the O(hpf ‘) term is ignored. These extrapolated 
values based on the pairs (l/20, l/30), (l/30, l/40), and (l/40, l/50) are shown in 
Table I. For these runs the coordinate transform parameter a has the value, CI = 0.25. 
The agreement between the extrapolated values appears to be very good. We will 
assume the value for the pair (l/40, l/50) is the true value. In subsequent discussion 
the error will be computed from this last extrapolated value Ru = 3.809796. Note 
that we will compare the integral Nusselt number Ru and not the boundary number 
Nu(-I). The corresponding value of Nusselt number found from Caltagirone’s 
second order method, for N = 48, is Ru = 3.8 13. Relative to the results in Table I 
only three place accuracy is achieved, even with the high level of resolution, N = 48. 
A Galerkin calculation by Schubert and Straus [ 121 using 30-‘modes gave a more 
accurate value, Ru = 3.808. A symmetry condition was invoked in order to set the 



FLOW IN GEOTHERMAL SYSTEMS 

TABLE I 

Richardson Extrapolation for %I, Based on the Fourth Order Scheme 
with the Coordinate Transform Parameter CL = 0.25 

Ru Extrapolated Ru 

20 3.812011 

30 3.810179 3.809728 

40 3.809908 3.809783 

50 3.809842 3.809796 

Note. Here A.< = Ai = Zlh'. 

amplitude of a variety of non-symmetric modes equal to zero a priori. It is not 
obvious how this assumption affects the Nusselt number value obtained. 

5.2. The Influence of the Coordinate Transform 

We believed that a coordinate transform which concentrated points in the 
boundary layer would improve the accuracy. However, this was not generally the 
case. The coordinate transformation is described in Section 3. The ratio of the mesh 
spacing at the boundary to that in the interior is given by l/(1 5 3a). For EL = 0.75 
this yields 0.31 for the ratio. Here a is the parameter which defines the coordinate 
transform. In Table II we give the variation of the integral Nusselt number (Nu) with 
u. Were the spatial resolution was h = l/N= l/20. The Nusselt number Nu(z) was 
computed on each horizontal line of the mesh. The maximum and minimum of these 
values taken over the interior (i.e., excluding the upper and lower boundary) is also 
shown along with the boundary value. These Nusselt numbers were always symmetric 
about the center of the mesh, therefore the two boundary values are equal. The error 
is determined by using the extrapolated value given in Section 5.1 above. The value 
a = 0.5 gives a minimum spread in the interior values of Nu(z) and gives almost as 
good an error as a = 0.75. Except for the boundary values the larger values of cz give 
somewhat better results. The difficulty at the boundary is a surprise, since the mesh 
points are closer at the boundary. This behavior may depend on the resolution N. 
made the comparison for different values of u only at N = 20, and R = 200 wkere the 
boundary layers are not as well developed. 

In Table III we show the error in mu and also the spread of the interior values of 
Nu(z) for (I = 0.0. Note that the difference in the extrapolated values of ?& between 
the pair (l/20, i/30) and (l/40, l/50) is about 5&E-5 whereas it is ?.E--5 for 
u = 0.25 in Table I. Also we have a sharp minimum in the error at N = 40. This 3s 
probably due to some sort of “error cancellation ” in the computation of mu. Suck 
cancellation would tend to create inaccuracy in the asymptotic expansion used for :ke 
Rickardson extrapolation. These results do not show any advantage in using more 
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TABLE II 

Accuracy of Nu as Function of Coordinate Transform Parameter a 

NU Nu(max) - Error in 
a K-U Nu(min) Nu(max) boundary Nu(min) mu 

0. 3.80688 3.803 1 3.8142 3.8222 1.1 E-2 2.9 E-3 

0.25 3.81201 3.8114 3.8179 3.7566 6.5 E-3 2.2 E-3 

0.5 3.81144 3.8104 3.8150 3.7770 4.6 E-3 1.6 E-3 

0.75 3.81092 3.8077 3.8130 3.7908 5.3 E-3 1.1 E-3 

Note. Here R = 200, N = 20, AD1 scheme. 

TABLE III 

Error in the Nusselt Number at a = 0.0, R = 200 

N Ru 
Extrapolated Nu(max) - 

RI Nu(min) 
Error in 

NU 

20 3.806883 - 1.1 E-2 2.9 E-3 

30 3.809637 3.810315 2.3 E-3 1.6 E-l 

40 3.809797 3.809871 9.9 E-4 1.0 E-6 

50 3.809807 3.809814 4.5 E-4 1.1 E-5 

TABLE IV 

Error in mu for Second and Fourth Order ADI with a = 0.25 

Error 

N Second order Fourth order 

20 3.8 E-2 2.2 E-3 

30 1.5 E-2 3.8 E-4 

40 8.4 E-3 1.1 E-4 

50 5.2 E-3 4.6 E-5 
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TABLE V 

Computing Time in Seconds per Time Step on the CDC 6400 

Resolution. 
scheme 

PJ = 20 
second order 

N = 40 
second order 

N= 20 
fourth order 

N=40 
fourth order 

Total B Equation 
time time 

y  Equation 
time 

Otiler 
time 

1.59 0.75 0.65 0.19 

6.48 2.93 2.90 0.65 

2.74 1.00 I.52 0.22 

9.73 3.63 5.43 0.67 

Adore. One evaluation of v  per time step, AD1 scheme. 

points within the boundary layer. In fact, for N = 30 the values of ?&t obtained with 
a = 8 are considerably superior to those with a = O-25. Due to the cost, we did not 
run more experiments with variable u at a higher mesh resolution, say N= 30, 

5.3. Second cs Fourth Order Accuracy 

In Table IV a comparison of the second and fourth order ADI schemes is given for 
the case R = 200. The error for the former when N = 50 is of the order of magnit~~d~ 
of the difference between the present result and that given by Caltagirone [l ;a In 
Table V a sample of computing time on a CDC 6400 is given. The “ether time” 
category includes the computation of the Nusselt number7 which is done on each time 
step. A further indication of accuracy is given in Table VI where the variation in the 
Nusselt number Nu(z) is given. Again the spread (Nucmax) - Nu(min)) in the 
Nusselt numbers refers only to the interior vaiues, the boundary values are excluded. 
The Nusselt number values obtained from the second order scheme for N = 50 are 
close to that given by Caltagirone. To obtain a given accuracy: even at relatively !.cw 
accuracy, the fourth order scheme appears to be less expensive. 

Horne has also used a fourth order scheme for these equations fl9]. However, he 
feh it was necessary to have high accuracy only in the 8 equation. He used second 
order accuracy for the stream function v/. His comparison was more qualitative, and 
he was mainly interested in time dependent solutions. In Table VII we show a 
comparison of second and fourth order methods for the stream functions as applied 
to be steady state problem at R = 200. The fourth order 0 and second order v scheme 
does yield a considerable improvement over the purely second order case. I-Iowever, 
the purely fourth order scheme is still better and its use would appear to be justified 
from a cost effectiveness point of view. 
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TABLE VI 

Comparison of Nusselt Number Variation for a Second and Fourth Order Scheme 

N Nu(min) Nu(max) Nu(max) - Nu(min) Nu (boundary) 

20 3.82906 3.88339 5.4 E-2 3.83743 
30 3.81738 3.83867 2.1 E-2 3.82776 
40 3.81377 3.82525 1.1 E-2 3.82137 
50 3.81223 3.81962 7.4 E-3 3.81762 

20 3.81138 3.81782 6.4 E-3 3.75654 
30 3.80991 3.81146 1.6E-3 3.79760 
40 3.80979 3.81029 5.0 E-4 3.80608 
50 3.80978 3.80999 2.1 E-4 3.80834 

Second order scheme 

Fourth order scheme 

Nate. ADI with a = 0.25. 

TABLE VII 

Dependence of Error on the v  Scheme 

N=20 N=30 

CPU time CPU time 
Error in Ru per step Error in mu per step 

2nd order I3 
2nd order ~JI 3.8 E-2 1.59 1.5 E-2 3.55 

4th order 6 
2nd order 

I// 
9.5 E-3 1.84 3.5 E-3 4.00 

4th order 0 
4th order v  2.2 E-3 2.74 3.8 E-4 5.25 

Note. One solution of t,v equation per time step. a = 0.25. CPU time in seconds on a CDC 6400. 

6. THE NATURE OF THE OSCILLATORY SOLUTION 

When the Rayleigh number is increased, the steady convection solution becomes 
unstable. An oscillation in time is observed. This is most easily seen by plotting the 
Nusselt number as a function of time. We will again plot the integral Nusselt number 
because we feel it can be computed more accurately than the boundary Nusselt 
number. However, we will also refer to the latter, since it is of greater relevance. This 
instability or breakdown has been studied by several people. Horne and O’Sullivan 
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/g, 9 J found the transition to oscillation at R = 280, Schubert and Straus i 12! at 
300 < R < 320, and Caltagirone [ I] at R = 384. Worne and O’Sullivan’s computahm 
found this to be a harmonic oscillation with a fairly well defined period at higher a 
i’R 2 750) provided only half the bottom surface was heated. If the entire bottom 
surface is held at a uniform temperature then the oscillation in the Nusselt number 
was irregular with no well defined period or amplitude. Horne and O’Sullivan and 
also Schubert and Straus have found that a steady multicellular solution can be 
obtained if the proper initial conditions are used. Our results are similar. In addition 
we find a nearly steady single cell solution and oscillatory solutions of apparently 
different structure depending on the initial conditions. 

6.1. Accuracy in the Oscillatory Case 

The oscillatory case seems to require much greater resolution than the steady case 
discussed above. In the next section we show that the oscillation has a Finer scaie 
than the steady solution. This would explain the need for higher resolution. The cases 
which we describe in this section all use the steady state solution at R = 300 as t’n?e 
initial condition with Rayleigh number R = 400 used throughout the computation. 
The steady state solution at R = 300 is obtained from the ADI scheme, then saved on 
a file and used to start both the AD1 and RKF schemes at the higher Rayieigh 
number (R = 400). In Table VIII the amplitude of the oscillation in the Nusselt 
number is given, both for the integrated Nusselt number Ru and the boundary vaiue 

TABLE VIII 

Minimum and Maximum Values of the Nusseit Number--Deper.dence 
on Method and Resoiutmn 

Method ar.d 
resolution 

Integral Nusselt, Nu 

Min Max 

Boundary Nusselt Nu(-i) 
-__.---. 

Min Max 

RKF. IV: 20 4.8 1 5.24 j.ig 5.31 

ADI. N =: 20 4.77 5.48 4.92 5.17 
CL = 0.25, Ar = 0.: 

RKF, :‘\; = 30 4.91 5.15 4.99 5.01 

ADI, h’ = 30 4.90 5.19 4.97 5.06 
cl = 0.25. nr = 0.05 

ADl, N = 30 4.90 5.16 5.00 5.08 
n = 0.0. A: = 0.05 

RKF, I%‘= 20 
Second order 

4.83 5.64 5.49 233 

NOf2. R = 465. 
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Nu(-1). These are minimum and maximum values over the interval 90 < t Q 100 
with the calculation started at t = 0. The Nusselt number is printed at each time step 
of the Runge-Kutta code (RKF) and at intervals of At = 0.2 for the AD1 code. The 
time step used by RKF varied around 0.4. The error tolerance for RKF was E = 
2.E-5 for both relative and absolute parts of the error. Judging from runs with mesh 
resolution N = 20, this value of E is small enough so that time discretization error is 
not significant. Schubert and Straus report a Nusselt number range of 5.09-5.45 at 
R = 400 which is somewhat larger than our range of 4.99-5.07. It is difficult to judge 
the accuracy of our results. We need a run at N = 40 to verify convergence, but the 
cost is too high to permit us to make such a run given the computer available. 

The ADI scheme was run with a fixed time step. Experiments were run at N = 20 
which indicate that the time step, At = 0.1, is small enough so that temporal error is 
not significant. 

6.2. The Nature of the Oscillation 

The variation of the integral Nusselt number Ru with time is shown in Fig. 1. This 
computation was performed by the RKF scheme with N = 30 and R = 400. The 
steady state solution at R = 300 was used as the initial condition at t = 0. The time 
runs along the x-axis from 0 < t < 100. The period of the oscillation is quite well 
defined although the amplitude varies somewhat. This period is about 4.7 time units 
and seems to be largely independent of the finite difference resolution. The 
corresponding value of Schubert and Straus is 4.8. The amplitude, however is quite 
dependent on the resolution as Table VIII indicates. Figure 2 shows the same Nusselt 

FIG. 1. The Nusselt number Ru(tj by RKF scheme, N = 30, R = 400. 
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75 80 85 90 95 100 

FIG. 2. Eli(r) obtained by RKF scheme, R = 400. The --- curve has N = 20, the ___ curve has 
IbY = 30. 

number plotted for 75 < t < 100. Two curves are drawn, one for the resoiu~ion 
N = 20, the second for N = 30. Both curves were made by the RKF scheme at 
R = 400. Figure 3 shows the same problem solved by the ADI scheme. One curve is 
obtained when the coordinate parameter has the value u = 0.25. The curve for 
a = 0.0 is almost identical with the RKF case. The AD1 and RKF schemes use 
almost the same spatial difference approximation. Therefore if the temporal error is 
small we would expect the two schemes to yield the same result. 

In Fig, 4 a contour plot of the time-averaged temperature is shown. Note that this 
is a deviation from the linear conduction temperature and not the total temperatures 
This value is computed by summing the temperature at each grid point over all the 
time steps for 95 < z < 100 then dividing by the number of time steps. A similar plot 
of the stream function is given in Fig. 5. The maximum values of B and w at i = LOO, 
obtained by the ADI scheme with N = 30 and c: = 0.11 are d,,, = 0.560 and w,,, = 
0.0330. 

44YlL-Lu 
75 80 85 90 95 iO0 

FIG. 3. Nu(i) obtained by 4DI scheme, R = 400, N= 30. The --- curve has a = 0.0, the __ has 
0 = 0.25. 
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CONTOUR INTERVAL 0.06 

FE. 4. Temperature 8(x, z) obtained by RKF, R = 400, N = 30. Averaged for 95 < t < 100. 

CONTOUR INTERVAL 0.004 

FIG. 5. Stream function ~(x, z) obtained by RKF, R = 400, N - 30. Averaged for 95 < t < 100. 
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CONTOUR INTERVAL 0.036 

FIG. 6. Oscillation amplitude in 6(x, z) for 95 < t < 100. Obtained by RKF. F, = 420, A’= 30. 

In Fig. 6 a contour piot of the amplitude of the osciifation in B is shown. This is 
the difference of the maximum and minimum values at each mesh point in 
imerval 9.5 < 1< 100. A similar plot for the stream function Is given ir Fig. 7. 
ampiitude of the osciliation in B is 0.045 and for y it is 2.2E-3. The amplkude 
relative to the values of t9,,, and tymax are 0.081 and 0.065. The relative amplitude of 

CONTOUR INTERVAL 0.0003 

FIG. 7. Oscillation amplitude in y(x, z) for 95 < t < 100. Obtained by RKF, R = 400. N = 30. 
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FIG. 8. Nu(t) obtained by RKF scheme at R = 400 and N = 20. - started from steady solution 
at R =200,--- at R =225. 

the oscillation in the integral Nusselt number is 0.24/5.02 = 0.048. Note that the 
oscillation is concentrated in the corners. The fluid flows upward on the right side of 
the domain. The oscillation has a more rapid spatial variation than the average 
values. If the instantaneous values of 0 and v/ are plotted for several values of t, the 
plots are almost the same as the plots of the average values. There is a small but 
noticeable deviation in some contour lines due to the oscillation. 

One may infer from Figs. 6 and 7 that the relatively cool liquid moves downward 
along the left boundary then turns the corner with only minor variations in time at a 
given location. Then as the liquid moves to the right along the lower hot boundary, 

7.0 ,  ,  ,  ,  ,  ,  I , ,  ,  , , , , I  ,  I ,  , -  

6.8 

6.6 - 

6.4 - 

6.2 - 

6.0 

5.8 

Y 5.6 

5.4 

5.2 

5.0 

4.8 
CI \ I 

1 

FIG. 9. Nusselt numbers mu and Nu(-1) (upper curve) as a function of t (0 < I < 100) at R = 400, 
N = 20, from RKF started from steady solution at R = 225. 
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absorbing heat, an instability develops which is manifested as relatively large 
amplitude oscillations in the lower right-hand corner. Since tile porous media 
momentum equation contains no inertia term the instability is not connected with 
nonlinear inertial effects. Rather, it appears that a thermal instability develops in tire 
outer portion of the heated layer adjacent to the hot boundary. Since the larger 
amplitude variations are several mesh spacings from the boundary the process does 
not appear to involve a separation process. It is noted that the area of the stream 
function variation to half the maximum value is confined to a narrow region above 
the location of maximum variation while the analagous thermal disturbance area is 
iarger and extends upwards and to the right. Hence, some of the thermal variations in 
Gme apppear to be occurring where the stream function is relatively steady, Even- 
tually conduction smooths out the variation. 

The nature of the oscillation was strongly influenced by the initial condition in 9 
and v used to start the calculation. If the analytic functions of Eq. (5.i) are used to 
start a calculation at R = 400 then a steady multicellular solution is obtained (see the 
next section). If the calculation is started at 61 = 400 using the steady solution 
obtained at R = 200 or R = 225 an oscillation in mu(t) quite different from that 
shown in Figs. 1 thru 3 is obtained. The results of using R = 200 and R = 225 are 
shown in Fig. 8 which can be compared with Fig. 2. The case started with the steady 
sol&ion at R = 225 is also shown in Fig. 9 for the interval 0 < i < 100. The upper 
curve is the boundary Nusselt number I%(-1). It would appear from this graph that 
the motion is possibly periodic, but certainly not harmonic. 

We made an attempt to determine minimum Rayleigh number at which an 
oscillatory soiution can be found. The nature of the oscillation seems to be highly 
dependent on the initial conditions used to start the integration. Therefore, any 
experimental attempt to find the minimum should probably use several diflerent 
initial conditions. We used only two initial conditions. These were the steady state 
solution obtained at R = 300 using the AD1 scheme and a perturbation of this 
solution obtained by adding the following field to the initial temperature 

a( 1 + cos 47cx)(l + cos(47r(z + 0.25))), 0.25 < .“c < 0.75 
-1 < f < -0.5 (6 i\ \ -17 

0 otherwise. 

The value of the amplitude parameter was a = 0.05 which gives about a IO 96 pertur- 
bation in 8. IJsing the steady solution at R = 300 to start a calculation at = 400 
does produce an oscillation as we have seen. However, this steady solution with the 
10 ‘%I perturbation of 0 did not yield an oscillatory solution when used to start a 
calculation at R. = 350. This suggests the oscillation starts somewhere between 
R = 350 and R = 400. Straus and Schubert found the onset of oscillation to occur at 
Ii = 300 to R = 320. Their calculation used a Galerkin method which they checked 
for accuracy by varying the resolution. Their initial condition differed from ours. 
which probably accounts for the different result. 
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CoNTouR INTERVAL 0.005 

FIG. 10. Temperature 6’(x, z) obtained by ADI, R = 400, a = 0.25, N = 30, started at R = 400 using 
(5.1). 

CONTOUR INTERVAL 0.0002 

FIG. 11. Stream function ~(x, z) obtained by ADI, R = 400, a = 0.25, N = 30, started at R = 400 
using (5.1). 
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6.3. Steady State Solutions 

If the analytic formula of Eq, (5.1) is used to start a calculation at R = 400, then a 
steady state solution with a Nusselt number near 6.1 is obtained. This solution has 
the multicellular form shown in Figs. 10 and 1 B. The Nusselr number obtained for 
resolution N = 30, coordinate transform CI = 0 is Nu = 6.1 I, for N- 30, cz = 0.25, 
mu = 6.117, for IV = 20, o - O9 nu = 5.86, and for IV = 20, a= Q.25, Ru = 6,12. 
Schubert and Straus report Nusselt number vabres of 5.897: 6.045 and 6,108 for 
increasingly refined resolution defined in terms of mode numbers 10, 12 and 14. 

A nearly steady solution can also be obtained at R = 400 provided the Rayleigb 
number is increased gradually from R = 300 to R = 400. We started with the steady 
solution at R = 300 with N = 30. Then we increased R linearly with time, starting at 
t = 0, so that R = 400 at 1= 50. Then we ran with R at the cons%ant value A = 4 
for 50 < t < 200. The solution reached a nearly steady state with the Nusselt number 
Ru = 5.02 at t = 100. The oscillation amplitude in the Nusselt number in the range 
65 < t < 100 was approximately 5.024 to 5.03 1. The period of the oscillation was 
quite uniform with a value 4.8. The oscillation amplitude varied slightly, the 
minimum for 65 < t < 100 was in the range 5.0235 to 5.0240. The period of this very 
weak oscillation is the same as that for the case shown in Fig. 1. Apparently the 
oscillation is harmonic with a definite period provided it is not too strong. The. 
amplitude apparently depends on the initial conditions. We prefer to include this cast 
with the steady solutions since the amplitude is so small compared to the probabie 
error in the integration. 

CONTOUR INTERVAL 0.06 
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7. CONCLUSIONS 

In so far as the question of accuracy is concerned it is clear that fourth order 
methods are essential for obtaining long-time oscillatory results. Even with high levels 
of spatial resolution second order methods give less definitive solutions. 

Our results appear to indicate that initial conditions and the time history of the key 
parameter R play a significant role in determining the long-time flow configuration. 
Each of the rather different modes found at R = 400, appear to be stable. It is 
reasonable to assume that strong disturbances are required to cause a transition from 
one to another. 

For the problems described in this paper the Galerkin method is probably more 
efficient than the finite difference method which we used. However, we intend to 
extend our model to allow the material properties to vary with temperature. In this 
case the elliptic operator for v has variable coefficients which creates a problem for 
the Galerkin or pseudo-spectral approach [14]. 
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